NI

ANATTA

WHITE PAPER

Contents

INtrOdUCHION ..ottt 1
The WEb e 3
Web Net Model ..o 5
Web System Configurationcccoeceeveiieiieiiiienienieeee e 6
Web Architectural Style oo 8
Anatta Engine(s): ENEINe ..oocooiiiiiiiiiieieeeceece e 11
Anatta Engine(s): LINKS oot 18
Anatta Engine(s): NetWOrk ..o 22

Anatta Engine(s): Prototype ..o 25

0. Introduction

The inception of the World Wide Web (WWW) occurred about a quarter of a century ago.
WWW is based on a loosely-coupled architecture of inter-networked hyperlinks and provides a
uniform interface to all users. Web features such as OneWeb and the REST architecture have
helped WWW grow.

As a user agent, the browser employs hyperlink navigation to process any document or data,
irrespective of its source location. This feature, which requires no control or regulation for
documents to coexist, is a major innovation that enables users to create and link documents and

have them be freely browsed and processed.

We have adopted an architecture that is in contrast with the traditional systems based on RPC
and connection/data-oriented APIs. The proposed architecture is founded on the REST
architectural style, where programs can interact with each other asynchronously while
processing hyperlink navigations. When these programs are distributed over a network, systems

comprising these programs would possess the same relationships as hyperlinks do with web

pages.

Therefore, a new programming environment is required that can effectively process hyperlinks.
In this new programming environment, distributed programs could acquire the property of
loose-coupling, which is one of the primary advantages of the Web. Anatta Engine(s) provides a

functional environment for loosely-coupled programs.

Anatta Engine(s) functions in the same manner as browser process documents and all programs
are processed on the user agent’s system. It provides a “universal message bus” that helps
programs interact openly with each other on the Web. By employing Anatta Engine(s), users
can customize web-based processing and build systems that combine these processing
operations. This epochal innovation of the Web, led by users, may have a significant impact on

programming systems and documents.

Anatta Engine(s) applies the property of WWW’s decentralization to not only system data and
programs, but also to devices. While interacting with events on the Web, all of them could be

congregated, despite being dispersed over a network.

WWW could face the crisis of fragmentation caused by the systems associated with user
accounts, RDBs, and other traditional systems. This fragmentation could be prevented by

employing Anatta Engine(s), which in turn could revive OneWeb services.

1. The Web

At present, we use browsers to view news stories, read blog posts, peruse the latest weather
information, purchase appliances and clothing at online stores, and share information regarding
our activities and whereabouts. Such activities using browsers are enabled by the World Wide
Web (shortened to the WWW or, simply, the Web). The Web is a powerful channel by means of
which almost all activities that can be conducted on computers can be made available on the

Web.

Although, in general, the Web is often viewed as being synonymous with the Internet, they are
not the same. The Internet is a network of computer interconnections that connects millions of
machines all over the world, enabling them to communicate with one another. The Internet is

the underlying infrastructure that enables the Web to be accessed from around the globe.

In systems (e.g. mail, instant messaging, and VolIP) dependent on computer connections such as
the Internet, system elements are usually mapped directly onto connections between individual
machines. The layout structure of upstream system elements is determined by the layout

structure of the individual machine.

The Web, by contrast, is comprised of a hypertext system that uses hyperlinks embedded in web
pages to directly connect to other web pages. Selecting a link on a web page that is displayed in

a browser causes the associated web page to be displayed.

An important feature of the Web is that the machine on which a web page is directly connected
by hyperlink does not have to be directly connected on the Internet. In other words, although the
Web is a system realized on the Internet, it is possible to configure free structures from the
connections between machines on the Internet, but also from the individual machines

themselves.

The browser is what makes it possible to use the link structure described by a hyperlink while

accessing the Internet. The connection on the Internet is a simple structure in which there is only

a connection to each machine on which the browser is running and the machine on which the

web page associated with the link destination is present.

One of the strengths of the Web comes from the flexibility that this structure, called a
‘hyperlink,” allows. In addition, the fact that hyperlinks can constitute a complex structure in
spite of having the simple connection structure described above, is one of the key reasons for

the Web’s scalability.

Structures based on hyperlink connections on the Web produce ‘loose coupling,” which is also
one of the strengths of the Web. ‘Loosely coupled’ refers to a property in which mandatory
pre-existing conditions for both ends of each interaction are reduced to achieve the interactions.
Hyperlinks on the Web do not have place and time restrictions like those of an Internet
connection, and they are unrelated to the structure and format of other web pages. Loose
coupling makes it possible for the link source and destination to create and update web pages
gradually, independent of each other’s content, producing the overall growth and easy updating

of information on the Web.

Through hyperlinks, the details of a web page as an element in a machine can be connected to
other details, enabling the Web to take on a structure that is sufficiently complex to perform

almost all of the activities for which computers are used.

However, it is difficult to take purpose-oriented information systems arranged on individual
servers on a computer network that existed before the Web, scale them for the Internet, and then
superimpose them there. Even though the systems may be connected to the Internet, they have
elements in the machine that cannot be connected with hyperlinks, so they cannot take complex

structures with a simple connection structure.

2. The Web Net Model

In addition to web pages, hyperlinks point to images and videos. In some cases, there may be no

data at the link destination, giving rise to error messages such as "404 Not Found."

In order to handle these collectively as hyperlink targets, the target pointed to by a hyperlink is

referred to as a "Resource" to differentiate it from the data that is actually obtained.

A “Resource,” related by hyperlinks on the Web form a graph structure, which makes it possible
for the browser to process the hyperlink relationships as networks of “Resources,” based on the
graph structure (as mentioned in the previous chapter, despite the fact that a machine with a
Resource may not actually have a connection, a browser may still handle it as though it is

connected).

In such a case, in order to associate the resource with a hyperlink, a "representation” for
indicating the Resource itself is necessary. The representations are associated with their

Resource by Universal Resource Identifiers (URIs) or Universal Resource Locators (URLSs).

The most important characteristic of a URI is its universality, defined as meaning that it is
applicable to a Resource anywhere on the Web. In addition to having a standard format, each

URI on the Web is handled as referring to only one Resource at any time or place.

This universality makes the Web a single graph structure throughout the world. As a result,
people all over the world have participated in and shared the one Web, making it the huge

network it has become.

3. Web System Configuration

Here, we outline the standard specification of the Web from the viewpoint of realizing

universality.

A Resource can be identified from any browser by a URI representing a hyperlink. HTTP is the
standard connection protocol used on the URI based Internet to access the data of the Resource
indicated by the URI. The data of a Resource has to be able to describe a hyperlink to another
Resource, for which the standard format used is HTML.

In terms of the Internet, HTTP is one of its protocols and HTML is one of its data formats. For
the Web, however, HTTP and HTML exist primarily for realizing URI based hyperlink
connections and are the default for forming a single graph structure that can be universally

utilized. Means unrelated to hyperlinks such as ftp, json, xml, jpg, etc, are not even an option.

HTTP enables Resource data to be accessed from the URI. The accessing side is called the
"client," and the other side that manages the relationship between the Resource and its data and

passes that data via HTTP is called the "web server."

The HTTP client side cannot use the resource graph expressed by hyperlinks merely by
receiving data matched a URI through the communication connection to the web server. In
order to use hyperlinked Resources as a Web, it is necessary to recognize the group of
hyperlinks included in the received data, and to repeatedly connect across to other web servers
managing the data of the linked resources (referred to here as "link navigation"). The program

that performs this processing is called a Web User Agent ("User Agent").

In other words, only "link navigation" programs that is based on the process of User Agent can
process the Web as a network of hyperlinks. An ordinary communication program processes

communication and data, but it does not process these as a Web.

A browser is a User Agent that provides a user interface to the Web. As a User Agent outside

the Web, in accordance with a user’s input, such as when the user clicks on a link, or with

automatically loading images, style sheets, scripts, etc., the browser create a connection between

Resources based on hyperlinks.

Basics of User Agent as processor of Web is a simple mechanism of hyperlink navigation. With
this simple mechanism, every system exists as one Web, and it does not require to be controlled

to coexist.

4. Web Architectural Style

The Architectural Style of the Web called "REST" established the simple mechanism of "link

navigation," which is the basic principle underlying a User Agent.

REST is defined as a set of properties, the most important of which is the “Uniform Interface.”
In the Uniform Interface, all objects in the system have the same general-purpose interface

specification and all interactions are done via that interface.

The fact that the same interface is applied for everything means that there is no need for
preliminary adjustments to individual objects or methods, based on specialized knowledge. In

all cases connections can be established is the premise.

On the Web, URIs and HTML, as well as HTTP, are based on this property. Whatever the
activity performed on the Web, whatever the information on the Web is, the same method is
used for the interaction methods and data formats between browsers and web servers. This
Uniform Interface is what makes connections, established from hyperlinks based on the URI,

possible.

Conversely, the interaction methods and data formats specialized for types of activities and
information do not satisfy the Uniform Interface characteristics, and therefore cannot be applied

for "link navigation."

The name REST is the acronym for "Representational State Transfer." In Chapter 2, it was
explained that a Resource identified by a URI and data obtained from web servers are
differentiated from each other. In the latter case, the HTML and image data obtained from the
web server is called a "Representation." What is "transferred" by this "Representation" is the

current "State" of the Resource.

What this means is that the Resource does not change as the target pointed by the URI, but the
state of the Resource can be changed. In other words, even if the state changes, the fact that the

meaning as a resource does not change is a condition for establishing the URI. That is, the URI

must be persistent. This means that when a Resource is linked to another Resource by URL, in
addition to there being no change in the meaning of the URI destination, there should be no

inconsistency for the link source from changes of its destination.

The universality of this URI makes it possible for the link source and link destination to each
autonomously change progressively while the relationship established on the Web remains. If
the universality is not guaranteed, it would be difficult to change the link destination and also be
difficult to change the link source itself because the link source must, synchronously, cope with

the change of the link destination.

To summarize the above, REST is a world in which any kind of object can be connected with
the same specification. It is possible to arbitrarily make individual links not subject to control or

permission, and it is possible to have individual link objects change autonomously.

There is no doubt that the possibilities inherent in REST have promoted the growth of the "One
Web."

On the other hand, the fragmentation of the Web, due to so-called Web Services that diverge

from REST, continues to increase.

Web Services provide functions to users in a form that binds their data. Functions are
implemented as a program dealing with traditional databases which is contrary to the
architecture of REST, and mainly only the result values are provided as a Resource in the form
of web page. On the other hand, both the data not provided as web pages and the intermediate
forms of the data processing are hidden in the walls of Web Services, and as such cannot be

traced with the simple mechanisms described to this point.

This is because it is difficult for a Web Service to provide data and intermediate processing as a
Resource. The objects processed by the program are an internal database, and the intermediate
processing forms are functions or internal data values. They cannot be treated as universal

Resource directly.

These arrays of walled-off Web Services seem like a universe of isolated islands. With this
separated structure as the premise, users will try to be satisfied by bringing everything into one

of Web Services or choose the several Web Services to use with separating their own data.

A third party that wishes to handle data inside a service wall has to connect by using specialized
methods for each individual Web Service, that adheres to an API specification.

Data is acquired by the network connection as a HTTP client from the URI conformed to the
API specification, then processed as a data structure specified in the API specification. Even if
the URI is included in the data structure, access to that URI must similarly be processed based

on the API specification, including the communication methods.

In this way, in such a Web Service, the Web, which is the only diverse structure realized by
hyperlinks able to link directly to individual Resources on web servers, becomes a legacy
Internet-style structure in which the relationship is limited between web servers by their API

connections. This is how the Web is being fragmented by Web Services.

In Web Services in recent years, the introduction of AJAX has dramatically improved the user
experience. AJAX is a mechanism which separates the synchronous Internet style API access of
Web Services for the State of Resource and the asynchronous interactions of the user interface

on the User Agent side.
However, the AJAX-based development is in the User Interface; the architecture of other parts

such as the web servers remains conventional. Because of this, even AJAX has not stopped

Web fragmentation caused by Web Services.

10

5. Anatta Engine(s): Engine

Programs constructed on environments and techniques from prior to the Web, that would handle
the hyperlinks in a limited way, are a cause of Web Services that are diverging from the loose
coupling of the Web. We provide an entirely new program environment, which is built around
the handling of hyperlinks, and describe it accordingly so that we would make the programs
themselves benefit from the loosely coupling. The Anatta Engine(s) is an environment for

programs with loose-coupling abilities.

The server side of Web Services forms a vertical hierarchy because different APIs are called for
each interaction, not only between Web Services (as described in Chapter 4), but also between

any part in each Web Services, i.e. web-servers or data stores.

The Anatta Engine(s) changes this to a horizontal relationship on the Web by making each parts

as Instance event-driven style.
Just as AJAX improves the user experience by changing the architecture of the interface to one

that is event driven, the Anatta Engine(s) resolves web fragmentation by changing the

server-side structure to event-driven style.

11

Fig5.1 Comparison of AJAX model (top) and Anatta Engine(s) model (bottom)

user interface

|
JavaScript call

¢ HTML+CSS data
I
user interface Ajax engine
A A
HTTP request HTTP request
ttl(s) transport htta(s) transpo
HTML+CSS data XML data
\ / Y
web server web and/or XML server
datastores, backend datastores, backend
processing, legacy systems processing, legacy systems
classic Ajax
web application model web application model

Jesse James Garrett / adaptivepath.com

This image is from AJAX: A New Approach to Web Applications

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications (quoted Feb. 4, 2014)

12

browser client

With the Anatta Engine(s), the Engine also introduces asynchronicity and loose coupling in the
server-side mechanism. Instead of a synchronous invocation of the middleware service, it is

processed as an asynchronous event publishing to an actively living Instance.

13

Figure 5-2 Comparison of asynchronous interactions in AJAX application (top) and

asynchronous interactions in Anatta Engine(s) application (bottom)

cloud instance

client

/
browser Ul

L

| user activity

\ = 2

______ 3 -

I8

I o . * 5.

" Ajax engine

1

\

client-side processing

worsswsuen Eep

data transmission

cloud instance

l/ [Engine)

! event-update
\

]
|

\

cloud instance

&ngine]

| event-update

Ir [instance]

([Engine]
g
| eventupdate
A e
__________ 2
lf [instance)
1 processing
N o e s s e e e S e e

| processing
\

L{Engine]

| event-update

l’ [instance)

| processing)

The asynchronicity of each Instance can traverse between distributed Instances and

function as an asynchronous interaction. The Engine also has a mechanism to realize

distributed cooperation utilizing the loose coupling inherent in the Web, and by adopting

distributed asynchronous cooperation on the Web, Instances can be attached and detached

like parts. The Anatta Engine(s) adopts the following structure to realize these mechanisms.

Based on the architectural style of REST, the Anatta Engine(s) makes it possible to deal with

link navigation asynchronously in a program by setting hyperlinks and Resources as first-class

objects.

14

In the Anatta Engine(s), the Engine provides a mechanism to execute any program itself, that
utilizes resources on the Web with the link navigations, as an Instance that exists as a
resource with URI on the Web. The program as an Instance is also an existence that could be

utilized from other Instances within the Web.

For a program Instance of the Anatta Engine(s), provides a mechanism that makes HTTP
accesses to its web server asynchronous events. It enables it to process the asynchronous link
navigations inside the processing from asynchronous events, and overall, in the Anatta

Engine(s), all programs are described as being asynchronously processed.

The Anatta Engine(s) provides two basic elements; Links that represents URIs and Resources,
and Entities that represents information of a state of a Resource.

The Entity functions as a container holding information of URI such as Resources, and
hyperlinks. It also has a structure including HTML and Atom as formats that may represent the
hyperlinks. The Link can be acquired as a group of hyperlinks from the Entity, and also the

Entity can be acquired as a destination of the Link.

With a program that uses Link/Entity processing, everything is handled asynchronously.
Programming handling asynchronous and unified Resource link navigation premised on HTTP
and HTML can be available without dealing with the connection management and data parsing

that were formerly used.

In an Anatta Engine(s), the most characteristic feature of a program's instance is that itself is
also the Resource. As a Resource, accessed from outside with HTTP, the Instance executes

the process described in the program, to any Resource as its objects.

During this execution of Resources as objects, the instance behaves as a User Agent that
performs link navigations with functions of the Link/Entity. In the Anatta Engine(s), the
Instance provides a mechanism that can combine both User Agent and Resource.

As both Resource and User Agent, each program Instance holds its current state individually.
In the Anatta Engine(s)) HTML DOM is used as a structure for managing a state of the
Instance, and along with this, the HTML format including JavaScript is adopted for the
source code of the Instance program. On HTML DOM, there are two advantages that

15

programs as Resource handle HTML as a Representation for describing hyperlinks, and that
programs as User Agent could be programmed as a style managing their states with

asynchronous events as same as browser-based programs fitted for processing the Web.

In the Anatta Engine(s), also, it is possible to use the Instance program to describe processing
of arbitrary object Resources. In order to make it possible to process any Resource as an object,
the program code describes the information of interest in the Resource to be processed. That is,
the code is described as queries to the Entity with element names as metadata used on the

program side.

From the programs, the Anatta Engine(s) separates processing locations on the structure of
Representation formats of the Resource as their objects. This separation eliminates the tight
coupling that is bound by the format between the program and the Resource to be processed.

By registering the TermSet in Engine that associates an element as metadata handled by the
program with the location of the resource on the data structure, the Entity serves information
from the element name.

Not only the creator of the program but also a third party such as a user of the program or a data
provider can also freely define the TermSet and can publish and use the TermSet, itself as

Resource.

Thus, with respect to when an Instance acquires an element from an arbitrary Resource, it can
acquire and use a Resource having a Representation defined as a TermSet independently from
an Anatta Engine(s) or the program. Using TermSet splits the processing and its structure for
the processing, and when the processing is described as a program, there is no need to assume a
specific formats or structures for the Resource, and it is possible to make a program that could
apply any object.

Furthermore, by updating the TermSet only, the coverage of the processing Resource can be
extended; for example, a Resource, that was not a processing object at the time of the program
creation, could be put as the object at the later. The loose coupling based on the TermSet
between the program and its target Resource not only extends the range of the target Resource
but also widens the applicability of the program itself by making it more generalized, in

principle giving it the ability to be used beyond the assumptions envisioned by the creator.

16

In this way, the Anatta Engine(s) utilizes TermSet for a Resource as a program, a program
processing object, and a program to be processed as an arbitrary Resource, processes an
arbitrary Resource, changes the state of the Resource and provides the program Instance and
the processing.

With the Anatta Engine(s), the system can be realized as combinations of multiple Resources.
Programs that perform web processing interact as Resources, executables of the programs are
accessed from other arbitrary programs as Resources, and those programs are also accessed as

Resources.

The Anatta Engines(s) generate and fill Resources in this way in a world where all targets are
connected with the same specification, without being controlled. The Anatta Engine(s) creates a
state that generates, coordinates, drives, and updates Resources, not by actions from the web

browser or by data obtained by the program, or by fixed updates.

Under this Anatta Engine(s), the server is not for moving a middleware group consisting of
calling relationships, but is changed to a structure, which can be called an Instance “group”
linked on the Web by an event. The cloud will change to something for the Instance group,

and the Instance group structure will accelerate technologies such as IoT (Internet of Things).

17

6. Anatta Engine(s): Links

Multiple Anatta Engine(s) work cooperatively to handle even a program Instance on the
Engine as an object that is processed as Resource on the Engine. The Instance of the
program extends the Web as a Resource that could be linked, while the program Instance also

processes the links.

With the Anatta Engine(s), programs which treat the Instance of a program promoted to
Resource on the Engine as a processing object can also run on the Engine. The former
programs perform reacting with continuous state updates from the target program. The Anatta
Engine(s) uses this chain of process-driven processing to enable programs to interact in a REST

structure.

To enable interaction among such programs to form a single network on the Web, the Anatta
Engine(s) also provides a mechanism consisting both of an implementation collection
Streamer, which realizes interactive processing based on hyperlinks on the Engine, and a
message exchanged in cooperation Particle, which is a metadata specification of a Resource

that forms a universal event.

The collection Streamer that implements interaction processes on the Engine is comprised of
three elements; the first one is called a Channel which is a program Instance on the Engine
to focus on mediation processing of interactions, the second one is Port which is a library on
the Engine for issuing messages to the mediation Instance, and the last one is another Port

which is a library on the Engine for receiving messages from the mediation Instance.

Since the Channel is a sort of Instance on the Engine so that it is also a Resource which has
a URI, the Port both of the issuing and receiving sides establishes interactions by specifying
the URI of the Channel. The library on the receiving side is designed to handle the Resource
linkage processing in asynchronous event processing performed by Instance of the Anatta

Engine(s).

18

By means of the Streamer, individual events and event strings are also represented as
Resources using hyperlinks. This makes it possible to express events and event lists on standard
specifications such as HTML and Atom, and it can be handled as a normal HTML page or
Atom feed regardless of the specification other than that of the programs’ "GET" the URI of the
Channels or the events.

Since the connection processing is implemented as a metadata process of the Anatta Engine(s),
it is also possible to interpret normal HTML pages or Atom feeds as Channels on the receiving

side.

The Particle would be prepared as a definition of universal general-purpose event
information so that any connection library can be connected to the stream data flow through the
Channel for processing event interactions. The Particle is a protocol to describe how the
event occurred, such as the issuer of the event, the event object, the name of the event, and the

date and time, using the metadata mechanism of the Anatta Engine(s).

The protocol does not contain any information related to "processing" of the application
program. It specifies the information just related to the "propagation" of events. Both metadata
prescribed in the protocol and metadata used in the processing of individual application

programs are embedded as a Resource into one event.
Information in the Particle represents the interaction network itself that is constituted by the

Anatta Engine(s), and is used by the programs that process the network itself such as the

Channel itself or a program which propagate events from one Channel to another.

19

Figure 6-1 The relationship of Instance, Particle, Channel and Port comprising a

Streamer

‘[Instance] ‘[Instance]
- . POST [Particle GET [Particle] .

.| [Port] T : — < [— [Port]

In this way, the Anatta Engine(s) realizes a "general message bus" on the Web that allows

programs to link in an open and chained manner using Streamers and Particles.

Note: General message bus:

In the Web Services industry there is a system that employs a structure using event-driven
via a message bus such as an Enterprise Service Bus (ESB). However, that’s a middleware
product used as a backend bus; it is not designed to perform open interaction based on the

Web.

Interaction method performed on an Anatta Engine(s) network is designed to realize that it can
produce open connectivity throughout the Web, like the hyperlink relationships. As a Resource,
the "general message bus" of Anatta Engine(s) is a mechanism on the current Web using URI,
HTML, and Atom. The mechanism of event linkage works by applying the function of the
Anatta Engine(s) that realizes loose coupling, such as metadata processing, to Resources of Web
standard ones.

As such, it does not vertically connect, like the backend layers of a middleware product (an OS
and application, for example), instead the Anatta Engine(s) horizontally links the programs as

Resource.
With the hyperlink and the general message bus implemented by the Anatta Engine(s), the Web

becomes a single network of programs that are interacting, while each continues with its

independent processing. The world of the Web, where applications-bound data and users form

20

individual networks is changing to one in which data and users are autonomously and freely

linked as Resources expanding day by day and giving rise to new data and applications.

21

7. Anatta Engine(s) : Network

The Anatta Engine(s) processes arbitrary programs with the User Agent mechanism. The first
step is to run on the Web as an Anatta Engine(s) program what the user wants to process
automatically on the Web while using the browser. Here, the Anatta Engine(s) assumes a
situation in which the user arbitrarily prepares and executes a program from each viewpoint, in
the way that a user performs an add-on of a browser or the like. The user customizes it as a

program for processing the Web for themselves and runs the program on the Engine.

Those small programs running on the Web in a distributed manner will interact in an event
using the following Resources. That is, by means of a generic Channel, that has a URI and
uses events to connect Engines together, and a Resource having a specification that enables
open event connection, programs on Engines dispersed on the Web are capable of making
open event interactions, then they have the ability to connect even if they do not know each
other. Programs are linked via the Channel, and a Channel can be linked with another

Channel via a program.

Through the program "links" in other words linking these processes with each other by events,,
the Anatta Engine(s) programs form a dispersed system on the Web. Events on the system can
be extended or another distributed system constructed by connecting other Anatta Engine(s)
programs. In this way, links through the interaction of Anatta Engine(s) form one big network,
among which dispersed programs on the Web become components that span multiple dispersed

systems, a network in which dispersed systems coexist.

The program on an Engine changes its own state from an event by its processing, and the state
change is also accessed as a Resource, so it has dynamics that cause an event acting on another
Engine. Also, as indicated by the URI from the Engine, the Channel forms a medium to
propagate the dynamics and, to expand on the explanation of Chapter 6, becomes a Resource
that indicates the links of an indefinite number of Engines. The Channel forms a Resource
representing a "flow" of events caused by a large number of dispersed Engines. The interaction
between Engines and Channel brought about by the dispersive properties constitutes a

network in which the spread of "dynamics" is manifested as the "flow."

22

The existence of a network with the "flow" changes the way itself of handling the network.
Since a network, in which there is already a flow can be openly available, in anticipation of the
effect of the flow, services link programs for executing application processing of data coming
from the flow, and conversely, in anticipation of the processing at the flow destination, the user
links a program that puts data on the event in order to flow the data. The increase in individual
links to the network will cause it to expand, leading to further flows and increased links.
Conventionally, a network has been attached to a specific purpose application service like a
database, and individual applications have provided separate networks, but in this "flow"

network, application processing providers and users are linked to one network, and, in effect,

are handling the same flow.

Here, it is rational for both provider and user to take action premised on the flow network.
Rather than prepare a system from scratch by oneself, utilize the existing network, prepare the
necessary parts and link to that network to achieve the purpose. If what is on the network is
unsatisfactory or defective, you will prepare and link to something better that is updated or
changed. The existence of such variations will also encourage original updates. In this way, the

changes of individual dynamics accumulate and become the dynamics of the network itself.

A program on the Web should accept and process hyperlink destinations that include a variety

of events brought in via the flow not limited to a specific event source, thereby becoming an

The Anatta Engine(s) has a function to process a Resource by using "the information structure
metadata." In the program, Resources such as events and their hyperlink destinations are
processed using metadata based on the TermSet of Chapter 5, not data structures or contents in
a specific format, thereby making it possible to make use of the diversity brought about by the

flow.
Conversely, the program can also implement control to adapt the flow itself to its purpose using

information coming from the metadata of various events. Acquiring the Channel from the event

metadata, the program dynamically switching destinations of autonomous links or metadata

23

restrictions. With respect to the same flow, when multiple programs handle different events,

they become diverse network activities, further increasing the dynamics of the network.

In this way, the Anatta Engine(s) attempts to apply the architecture that systems comprised of
programs link each other with hyperlinks like web pages by having dispersed systems mix on

the network.

The dispersive property of the Web is also useful in system data and programs. For example,
while in Web Services, personal data is managed in one place as account data and exists
independently for each service, it is more natural to gather the data together on an individual
basis rather than on a service by service basis and interact in a distributed manner. In ubiquitous
computing, for example, instead of installing a specialized device for a specific application,
devices such as sensors and actuators are personally equipped, then linked the devices together
or linked between the devices and programs on Anatta Engine(s), it applies the way to expand

their applications.
With Anatta Engine(s), the programs that make up a system, the persons that make up a social

network, and the devices that make up ubiquitous computing could all be dispersed and placed

on the same network and mixed through event linkage on the Web. This is the "new Web."

24

8. Anatta Engine(s) : Prototype

We have prepared a prototype implementation of the Anatta Engine(s) running on node.js'. The

Engine can be executed in an environment, in which node.js runs.

In this implementation, we use promise'! for the Engine itself and for user program the
Engine runs, as asynchronous programming, for which we adopt nodejs and ¢, which is a
promise implementation in Browser JavaScript. We also used jsdom®, which is highly
compatible with HTML DOM on the browser, as an implementation of HTML DOM, which is

the state of the Instance on the Engine.

Here is an example of the program shown in Chapter 5 in which the Instance of the Engine

processes the Web.

"use strict";

window.addEventListener("agent-load", function (ev) {
var url = document.getElementById("url").href;
var link = anatta.engine.link({href: url});
var contents = document.createElement("div");

var template = document.querySelector(".newsitem");

var content = function (entry) {
var item = template.cloneNode(true);
item.querySelector(".href").href = entry.attr("href");
item.querySelector(".title").textContent = entry.attr("title");

item.querySelector(".date").textContent = entry.attr("date");

item.querySelector(".desc").textContent = entry.attr("desc");

return item;

s

window.addEventListener("agent-access", function (ev) {

25

ev.detail.accept();
link.get().then(function (entity) {
entity.all().map(content).forEach(contents.appendChild,
contents);
ev.detail.respond(200, {
"content-type": "text/html;charset=utf-8"
}, contents.innerHTML);
1)
}, false);
}, false);

This program code shows the asynchronous process that extracts the href, title, desc, and
date of the enumeration entries, with the metadata functionality from the web page acquired by
GET-ting the link destination stored in the HTML DOM as the Instance state, and returns
self-states for each HTTP GET arrived.

As shown in Chapter 5, the metadata handled by the program is independent of the format and
the document structure. This code would work when mappings that associates externally

provided metadata with the document structures is registered to the Engine.

For example, the mapping of metadata to correspond to the structure of the Atom feed put out

by the site "W3C News" is as follows.

{
"name": "w3cnews-feed",
"content-type": "application/atom+xml",
"link": {
"href": {"selector": "link[rel='alternate']", "value": "href"},

"title": {"selector": "entry > title", "value": "textContent"},
"date": {"selector": "updated", "value": "textContent"},

"desc": {"selector": "entry > content > p", "value": "textContent"}

26

As shown in Chapter 5, the state of the Instance is HTML DOM, and in order to create an
Instance, it is necessary to prepare HTML representing its initial state. The HTML for

processing "W3C News" using the above program (referred to as script.js) is as follows.

<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<title>agent</title>
<script src="script.js"></script>
</head>
<body>
W3C News
<article class="newsitem">
<hl class="title"></h1>
<div class="date"></div>
<p class="desc"></p>
</article>
</body>

</html>

This is common HTML for which library codes for the browser code can be used. Alternatively,

library codes written for the Instance can be executed on the browser.

The libraries bundled for an Instance in the prototype can be made available to use in the

JavaScript code for the browser as it is. These bundled libraries include a simple template

27

system based on DOM, a testing framework, and a Streamer for “dispersed event”

interactions.

We plan to integrate the Streamer functionality into the Engine, which will make it possible

to handle from the program code in the same way as the JavaScript code, described above.

Furthermore, as an example of the system constructed by dispersed interactions,, we have
implemented an online bookmark sharing system (codename "potluck™). In this system, the
following six Anatta Engine(s) programs run as independent Instances and adopt the

event-driven architecture via Streamers.

"activities": A program Instance that makes bookmark activity events as Resource. They

are responsible for the functions corresponding to Channel described in Chapter 6.

"post": A program Instance that converts form data POSTed from the browser Ul into

HTML as a bookmark activity event and issues it to "activities.”

"index": A program Instance that receives events from "activities," then builds a

Resource as a view of the new page arrivals list.

"link": A program Instance that receives events from "activities" then builds a Resource

as a view of comments listed for each page.

"author": A program Instance that receives events from "activities," then builds a

Resource as a view of pages listed for each actor.

28

"tag": A program Instance that receives events from "activities," then builds a Resource

as a view of comments listed for each tag.

This system applies a simple architecture consisting of an Instance which only issues or only
receives events. Individual Resources are linked to each other by hyperlink. It does not carry out

any database-like relations or network connections.

In this architecture, "index" and "link" keep updating their respective specialized data from the
received event, and manage it locally. Since each Instance is independent, when the system is
extended, such as by implementing a "popular comment list,” for example, it can be done by
creating a program that constructs data representing that function from the received event and
adding a new Instance of this program. That can be done without affecting other active
Instances. After the addition, the Instance the update of the system completes by each

Instance adding a hyperlink to it at any time.

On the event-issuing side, the system can be enriched in other ways. In addition to the ablity to
"post,” a bot-type program Instance can be operated which watches over twitter and converts
tweets into events that are continuously issued to "activities." In this case, in each Instance an
event that includes the link is interpreted as a bookmark activity event and processed in the
same way as the event issued by "post." In this way, "activities" will change beyond the
Channel for bookmarking only, resulting in an evolution to a mixed network of distributed

systems as described in Chapter 7.

The architecture shown in this example of a system is not special and not one having a narrow
range of application. The use of the Command Query Responsibility Segregation (CQRS)
architecture also makes it possible to realize a general application system with the same style on
the Anatta Engine(s). If the CQRS architecture were adopted by usual systems, it would be
divided into possible subsystems for each structure which can be centrally managed inside the
databases. But with the Anatta Engine(s), it becomes possible to disperse for each Resource, so

that, as shown in this example, it is possible to adopt a CQRS structure with finer elements.

29

For this reason, even when performing a function extension that connects a single instance, or
when constructing a larger system by linking multiple systems, it is possible for it to evolve as a

CQRS based system using hyperlinks and event linkage.

This implementation of prototype “nodejs” allows one of the environments which runs the user
program of the Anatta Engine(s) that performs Web processing. The implementation can be

executed directly using Paa$S or IaaS or a PC or small ARM" machine.

The prerequisites of the implementation of Anatta Engine(s) are HTML DOM and an
ECMAScript 5V execution environment. Therefore, the Anatta Engine(s) can be implemented in
a WebKit"i-based JavaScript execution environment including modern Web browser addons, a
WebKit library prepared in various environments and phantomjs*. The Anatta Engine

environment can also be implemented by forking open-source Chromium®*.

30

1 Anatta: "Anatta" is a Buddhist concept and means "non-self." The ancient Indian philosopher
Nagarjuna equated "emptiness" with "anatta" that refers to the doctrine of "non-self" in
“Dependent Origination”, saying: "All things and phenomena that exist in this world depend on
each other and their essence is not forever immutable; if one element or condition changes,
another will change and the whole world will already be different from the world of yesterday."
Leading on from that to the "One Web, " we propose "Anatta" as a technology that enables a

world different from yesterday’s.

ii node.js http://nodejs.org/

iii promise http://wiki.commonjs.org/wiki/Promises
v q https://github.com/kriskowal/q

v jsdom https://github.com/tmpvar/jsdom

vi ARM http://en.wikipedia.org/wiki/ARM architecture

vii ECMAScript http://www.ecma-international.org/publications/standards/Ecma-262.htm
viii WebKit http://www.webkit.org/

ix Phantom]JS http://phantomjs.org/

x chromium http://www.chromium.org/

31

http://wiki.commonjs.org/wiki/Promises

ANATTA Overview
December 2015

KANATA Limited

All right Reserved, Copyright (C) 2015 KANATA Limited

32

	0.Introduction
	1.TheWeb
	2.TheWebNetModel
	3.WebSystemConfiguration
	4.WebArchitecturalStyle
	5.AnattaEngine(s):Engine
	6.AnattaEngine(s):Links
	Note:Generalmessagebus:
	IntheWebServicesindustrythereisasystemtha

	7.AnattaEngine(s):Network
	8.AnattaEngine(s):Prototype

